python performance benchmarks

published: August 3, 2025 โ€ข

Overview

performance benchmarks for python libraries and language features.

Available Benchmarks

Data Modeling

Methodology

all benchmarks follow consistent principles:

  • minimum 10,000 iterations for statistical significance
  • high-resolution timing via time.perf_counter()
  • testing across multiple python versions
  • real-world operations
  • reproducible test scripts

Running Benchmarks

benchmark scripts are available in /public/wiki/python/benchmarks/data-models/:

# example: data model benchmarks
cd public/wiki/python/benchmarks/data-models/
uv run --python 3.14 --with pydantic --with sqlalchemy python benchmark.py

Available Files

Contributing

when adding benchmarks:

  1. clearly describe methodology
  2. provide executable scripts
  3. test across python versions
  4. include visualizations
  5. document dependencies

See Also

โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•
on this page